Insolvencies in Professional Sports: Evidence from German Football

21. Jahrestagung des Arbeitskreis Sportökonomie, June 30th, 2017

Authors
Stefan Szymanski (University of Michigan)
Daniel Weimar (University of Duisburg-Essen)
1. Introduction and Research Question

- **European football clubs are generally linked with financial instabilities**
 (Andreff, 2007; Baroncelli & Lago, 2006; Boscá et al., 2008; Franck, 2014; Franck, E., & Müller, 2000; Frick & Prinz, 2006; Müller et al., 2012; Nielsen and Storm, 2012; Peeters and Szymanski; Storm & Nielsen, 2012)
 - “Winner-takes-all-market” → Rat Races
 - Money Injections by outside investors → less incentive to economic efficiency
 - Soft Budget Constraint → High possibility to “bail out”
 - Relegation → External shocks on income
 - Even Sloane (1971, p. 122) stated: “majority of league clubs operate at a loss and only remain solvent through income derived from non-footballing activities”

- **Germany perceived as being financially more stable**
 (Brand et al., 2013; Franck, 2010; Frick & Prinz, 2006; Morrow, 2013; Storm & Nielsen, 2012; Weimar & Fox, 2012; Wilkesmann et al., 2011)
 - Main reason: License Requirements by the DFL
 - 50+1 Rule → less inefficient money injection's
 - “Parachute”-option by the DFL
1. Introduction and Research Question

- **Drawbacks of research on financial performance of German football teams**
 - Disclosure of financial information except for a few cases

- **Insolvencies as proxy of financial performance in Germany**
 - Measurement due to official statements and press interest

- **Existing research**
 - Very recent research on insolvencies in Europe by Beech et al. (2010) and Szymanski (2017) in English football and Scelles et al. (2016) in French football

- **Research Questions**
 - Do German football club’s financial performances differ from those of other European top league-clubs?
 - What drives insolvencies in German football?
2. Insolvency Procedure in Germany

Insolvency procedure in German football

- Declaration of insolvency (request for the opening of insolvency proceedings at the local court)
 - Annulment of declaration → No consequences
 - Control by the court if the insolvency assets exceed the potential court fees
- Liquidation of the organization
- Opening of insolvency proceedings /
- 9 point penalty at the end of the season
 - Appointment insolvency administrator
 - Meeting of all creditors
- Insolvency plan proceeding
 - Rejection → Liquidation proceeding
 - Debt waiver
 - Insolvency quota
 - Survival of the organization
- Option
 - Foundation of a successor club
- Liquidation from the football league register
 - Liquidation of the organization
 - Debt repayment
 - Allocation remaining assets
- Restart at the lowest division
3. Descriptive Statistics

Insolvency statistic of German top tier football clubs (1995/1996 to 2016/2017)

<table>
<thead>
<tr>
<th>Division</th>
<th>Declaration</th>
<th>Annulled</th>
<th>Plan</th>
<th>Liquidation (Successor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0 (0)</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>3</td>
<td>21</td>
<td>1 (1)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>10</td>
<td>23</td>
<td>19 (14)</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>6</td>
<td>7</td>
<td>12 (6)</td>
</tr>
<tr>
<td>Sum</td>
<td>109</td>
<td>19</td>
<td>55</td>
<td>32 (21)</td>
</tr>
</tbody>
</table>

Ongoing proceedings: 5

3x Declaration: KFC Uerdingen, SC Fortuna Köln, SSV Ulm 1846

2x Declaration: TuS Celle FC, VfB Leipzig, Alemannia Aachen, VfB Lübeck, Borussia Neunkirchen, VfR Neumünster 1910, FC Sachsen Leipzig, FC Eschborn, Wegberg-Beeck 1920, FC Eintracht Bamberg, FSV Zwickau, Sportfreunde Siegen, Kickers Offenbach
3. Descriptive Statistics

Descriptive Statistics

Insolvency in European football – a comparison

<table>
<thead>
<tr>
<th></th>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Tier 3</th>
<th>Tier 4</th>
<th>Tier 5</th>
<th>Sum (1-3)</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 - 2002</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>24</td>
<td>9</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>2003 - 2014</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>29</td>
<td>14</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>England (Szymanski et al., 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 - 2002</td>
<td>0</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td>6</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>2003 - 2014</td>
<td>2</td>
<td>10</td>
<td>13</td>
<td>10</td>
<td>18</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>France (Scelles et al, 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 - 2002</td>
<td>2</td>
<td>6</td>
<td>16</td>
<td>no Data</td>
<td>no Data</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2003 - 2014</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>no Data</td>
<td>no Data</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
3. Descriptive Statistics

Performance before and after insolvency

Germany

England

Szymanski (2017, p. 14)
4. Empirical Analysis

• Measuring the importance of negative shocks on the probability of insolvency

• Empirical model by Szymanski (2017)
 ➢ Testing whether the sum of residuals (shocks) from two seasons prior to insolvency increases the probability of an insolvency
 ➢ 1st – 4th tier from 1995-2016
 ➢ First stage: demand-performance relationship
 • Dependent variable: negative log odds of league rank (Szymanski & Smith, 1997; Buraimo et al., 2007)
 • Attendance as proxy of demand
 • Predicting residuals as approximation of a shock (derivation from expectation [t-1])
 • Negative residual implies that the club achieved a lower league position than it might have expected → lower level of revenue than expected → financial stress
 ➢ Second stage
 • Using residuals from first stage estimation (Model 5)
 • Dependent Variable: Insolvency (1/0)
 • Linear probability model
4. Empirical Analysis

<table>
<thead>
<tr>
<th>Log Odds of rank</th>
<th>OLS</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Odds of rank<sub>t-1</sub></td>
<td>0.561 (10.63)<sup>***</sup></td>
<td>0.272 (7.24)<sup>***</sup></td>
</tr>
<tr>
<td>Annual attendance<sub>t-1</sub></td>
<td>0.095 (8.81)<sup>***</sup></td>
<td>-0.01 (-0.38)</td>
</tr>
<tr>
<td>Promotion<sub>t-1</sub></td>
<td>0.243 (5.31)<sup>***</sup></td>
<td>0.092 (2.16)<sup>**</sup></td>
</tr>
<tr>
<td>Relegation<sub>t-1</sub></td>
<td>-0.301 (-6.27)<sup>***</sup></td>
<td>-0.091 (-2.22)<sup>**</sup></td>
</tr>
<tr>
<td>Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.division</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>2.division</td>
<td>-0.572 (-7.19)<sup>***</sup></td>
<td>-0.68 (-10.48)<sup>***</sup></td>
</tr>
<tr>
<td>3.division</td>
<td>-0.876 (-7.18)<sup>***</sup></td>
<td>-1.242 (-11.9)<sup>***</sup></td>
</tr>
<tr>
<td>4.division</td>
<td>-1.406 (-7.63)<sup>***</sup></td>
<td>-2.05 (-13.87)<sup>***</sup></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.318 (-1.81)<sup>*</sup></td>
<td>1.064 (3.09)<sup>***</sup></td>
</tr>
</tbody>
</table>

Observations: 2,641

R-squared: 0.89

Note: t-values in parentheses; standard errors are clustered at club level
4. Empirical Analysis

Insolvency probability regression

<table>
<thead>
<tr>
<th>Insolvency (0/1)</th>
<th>LPM FE 1</th>
<th>LPM FE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals FE</td>
<td>-0.017 (-2.00)**</td>
<td>-0.004 (-0.51)</td>
</tr>
<tr>
<td>Promotion_{t-1}</td>
<td></td>
<td>-0.003 (-0.44)</td>
</tr>
<tr>
<td>Promotion_t</td>
<td></td>
<td>0.001 (0.09)</td>
</tr>
<tr>
<td>Relegation_{t-1}</td>
<td></td>
<td>0.06 (3.28)****</td>
</tr>
<tr>
<td>Relegation_{t1}</td>
<td></td>
<td>0.023 (1.54)</td>
</tr>
<tr>
<td>Division Fe Incl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.031 (3.49)****</td>
<td>-0.006 (-0.38)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.14</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Note: t-values in parentheses; standard errors are clustered at club level

→ Negative shocks and relegation are roughly equivalents and the probability of insolvency is increased when these events are observed
5. Conclusions and limitations

• Insolvency patterns are very similar between Germany, England and France
 - German clubs are financially more stable in the top two divisions
 - German license system only prevents the two top divisions from financial collapses
 - The financial collapses are shifted towards fourth and fifth division

• High rates of annulled declarations of insolvencies
 - 17% in football vs. 4% outside sports industries (2016 in Duisburg)
 - Proof for the soft budget constraint assumptions in football (bail out)

• Clubs enter a perennial downward spiral before an insolvency, which often collapses after a relegation (as a shock)

• Limitations
 - Limited club data before 2000
 - No financial and wage information (e.g. Szymanski, 2017)